Menoufia University Faculty of Engineering, Shebin El-Kom, Basic Engineering sciences Department Second Semester Examination, 2013-2014 Date of Exam: 9/6/2014

Subject: Introduction to ordinary differential equations. Code: BES 506
Year : postgraduate students Time Allowed : 3 hours Total Marks: 100 marks

Answer the following questions
Guestion 1
(20 marks)
a) Solve the following D.E by using the Variation of parameters:

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y=\frac{e^{x}}{e^{-x}+1}
$$

b) Find the general solution of the differential equation:

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}+\left(x^{2}-1\right) y=0
$$

Question 2
a) Solve the following D.E using the method of undetermined coefficients:

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}+2 \sin t-8 e^{2 t} \cos 2 t
$$

b) Show that $y_{1}(t)=t^{\frac{1}{2}}$, and $y_{2}(t)=t^{-1}$ form a fundamental set of solutions for the equation using Wronskian determinant:

$$
2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0 \quad t>0
$$

Question3

a) Write briefly the steps of Euler algorithm to solve the differential equations.
b) Solve the initial value problem using Euler's method with step size $\mathbf{h}=\mathbf{0 . 1}$, then compare the approximate solution with the actual solution :

$$
y^{\prime}=3+e^{-t}-\frac{1}{2} y
$$

$$
y(0)=1
$$

Question 4

a) Solve the following Riccati Equation:

$$
y^{\prime}=\frac{2 \cos ^{2} x-\sin ^{2} x+y^{2}}{2 \cos x} \quad y(0)=-1
$$

(Knowing that $y=\sin x$ is a particular solution of the given differential equation)
b) For Legendre D.E $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$. Obtain the Legendre $P_{4}(x)$ directly from Legendre's equation of order 4 by assuming a polynomial of degree 4, i.e.

$$
y=a x^{4}+b x^{3}+c x^{2}+d x+e
$$

Question 5

a) Show that $y=x J_{1}(x)$ is a solution of $x^{2} y^{\prime \prime}-y^{\prime}-x^{2} J_{0}^{\prime}(x)=0$
b) A mass weighing 4 lb stretches a spring 2 in suppose that the mass is displaced an additional 6 in the positive direction and then released as in Figure. The mass is in a medium that exerts a viscous resistance of 6 lb when the mass has velocity of $3 \mathrm{ft} / \mathrm{s}$. Formulate the initial value problem that governs the motion of the mass.

Fig. Spring mass system

